BAGGING, BOOSTING, and RANDOM FORESTS

1. Bagging and Random Forests

Recall that bagging is a random forest with m = p. So, here is just an example of a random forest.

```
> library(randomForest)
> rf = randomForest(mpg ~ .-name, data=Auto)  # By default, m = p/3. But we can also choose our
own m.
> rf  # (m is the number of X-variables sampled at each
node)
```

Call:

randomForest(formula = mpg ~ . - name, data = Auto, subset = Z)

Type of random forest: regression

Number of trees: 500 No. of variables tried at each split: 2

Mean of squared residuals: 8.130213

% Var explained: 86.53

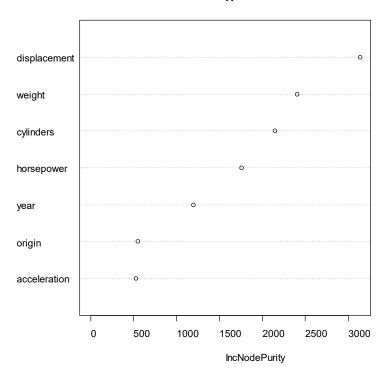
> importance(rf)

Measures reduction of the node's impurity (diversity), if split

by the given X-variable

	IncNodePurity
cylinders	2142.2611
displacement	3135.1382
horsepower	1752.5234
weight	2399.9452
acceleration	524.3148
year	1196.4857
origin	546.0370
-	

> varImpPlot(rf)



2. Cross-validation

```
> Z = sample(n,200)
> rf = randomForest(mpg ~ .-name, data=Auto, subset=Z)
> Yhat = predict(rf, newdata=Auto[-Z,])
> mean((Yhat - mpg[-Z])^2)
[1] 10.19022
```

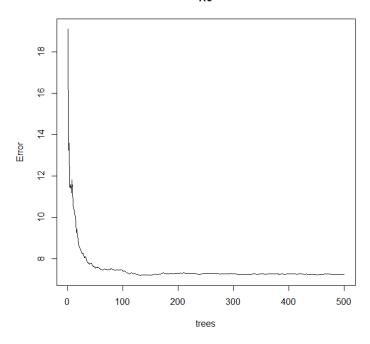
The mean-square error of prediction, estimated by the validation set cross-validation, is 10.19022.

3. Searching for the optimal solution

```
> dim(Auto)
[1] 392 9
```

There are 9 variables overall in the data set, minus mpg and name = 7 variables. Let's sample m = root of 7, rounded = 3.

```
> rf3 = randomForest(mpg ~ .-name, data=Auto, mtry=3) # mtry is m, the number of X-variables available at each node
> plot(rf3)
```



How many trees to grow? The default is 500, but error is rather flat after 100.

Random forest tool has multiple output:

```
> names(rf3)
     "ca11"
                          "type"
                                                                   "mse"
 [1]
                                               "predicted"
                                              "importance"
     "rsq
                          "oob.times"
                                                                   "importanceSD"
     "localImportance'
                                                                    ˈmtry"
                                              "ntree
                           proximity"
  9
                                                                   "test"
     "forest"
                           coefs"
     "inbag"
```

We would like to minimize the mean squared error and to maximize R², the percent of total variation explained by the forest.

```
which.min(rf3$mse)[1] 147which.max(rf3$rsq)[1] 147
```

Alright, let's use 147 trees whose results will get averaged in this random forest.

Mean of squared residuals: 7.322948

% Var explained: 87.63

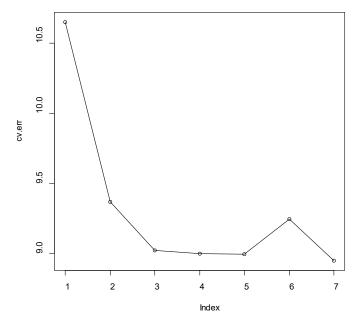
This is an improvement in both MSE and R², comparing with our first random forest.

We can optimize both m and number of trees, by cross-validation.

```
# I'm choosing a small test set to make the training set
> Z = sample(n,n-50)
close to the whole data set
> cv.err = rep(0,7)
                                                   # The optimal random forest may be too dependent on
the sample size
> n.trees = rep(0,7)
> for (m in 1:7){
+ rf.m = randomForest( mpg ~ .-name, data=Auto[Z,], mtry=m)
+ opt.trees = which.min(rf.m$mse)
+ rf.m = randomForest( mpg ~ .-name, data=Auto[Z,], mtry=m, ntree=opt.trees )
+ Yhat = predict( rf.m, newdata=Auto[-Z,] )
+ mse = mean( (Yhat - mpg[-Z])^2)
+ cv.err[m] = mse
+ n.trees[m] = opt.trees
+ }
> which.min(cv.err)
[1] 7
```

7? Apparently, bagging (m=p=7) was the best choice among random forests.

> plot(cv.err); lines(cv.err)



> cv.err [1] 10.652190 9.368370 9.023726 9.000002 8.996304 9.248892 8.951198 > n.trees [1] 112 494 318 208 484 319 293

Result: here is the optimal random forest, which happened to reduce to bagging.

> rf.optimal = randomForest(mpg $^{\sim}$.-name, data=Auto, mtry=7, ntree=293) > rf.optimal

Type of random forest: regression

Number of trees: 293 No. of variables tried at each split: 7

Mean of squared residuals: 7.407668

% Var explained: 87.81

> importance(rf.optimal)

	IncNodePurity
cylinders	4820.4219
displacement	7672.7643
horsepower	2838.2213
weight	4603.0577
acceleration	647.7559
year	2861.6324
origin	133.9062